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Finally, simplest pericdic motion of constrained systems can be investigated when the
spheres move in some (e, g. homogeneous) field of force with the result that conditions
(2. 1) no longer hold,
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The Poincaré-Chetaev equations for holonomic mechanical systems have been written
by Poincaré [1] and generalized by Chetaev to the dependent variables case [2], The
purpose of the present paper is to extend the mentioned method to the case of nonholo-
nomic systems,

1, Formulation of the problem . Let us consider a nonholonomic mechani-

cal system defined by the 7 Poincaré-Chetaev variables X1 ,..., Xy [2], which are
subject, in real displacements, to the following D holonomic and § nonholonomic con-

straints an®’ + ...+ Qs +a, =0 (s=1,...,p) 1.1)
oy + oo oz, +a, =0 (v=1,..,9) (1.2)

and in possible displacements, to Eqs. [3]
aadzy + ...+ aubz, =0 (s=1,...,p) (1.3)
oz + ..o bz, =0 v=1,...,9 (1.4)

L4
Here ag, a,, Oy O, are functions of the time t and the variables Xy ,...,%n ; X1
and Ox; are the derivatives and variations of the variables Xy . The constraints (1.1)
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and (1, 3) form a completely integrable system of P Pfaffian forms [4], The constraints
(1, 2) are not integrable, and may not mutually form completely integrable systems, nor
with respect to (1, 1),

Let all the constraints be ideal, and let the forces have a force function, Let us write
the equations of motion for this nonholonomic system by the Poincaré-Chetaev method
[1 and 2],

2. Constfuction of infinitesimal displacement operators, Asis
known, a closed system of displacement operators is constructed in the Poincaré-Chetaev
method [2], We find these operators for a given system as in [2], by using the holonomic
constraints (1, 1) for the actual displacements, and (1, 3) for the possible displacements,

Hence,let Wy,,,., Wy be the parameters of the possible displacements, and Ty,...,T)
the parameters of the real displacements, - The corresponding operators will be

0 S 3 0 'ni

i=l
Here £,', €' are functions of the variables and the time,
Then changes in the arbitrary function of the position of the mechanical system
JCE, X1, 400, Xn) in the possible and real displacements admitted by (1. 1) and (1, 3)
will be by definition [2]

k k
d=at[%n+ InXp].  o=Jaxn @

These operators X, and X3 ,,.,, &} satisfy the relationships

.3 k
(X07 Xo:) ] Bgl Coa_BXﬂ, (X., Xa) == Bgl CS“BXB (8, o= ‘1. ‘e ey k) (2-3)

Here Cy,p and C,,z are functions of Xy,.,., X, and ¢ dependent on the selection
of the set of displacement parameters,

3. Equations of motion, Let usdefine xi' and Sy according to (2, 2) for
the function /=0y (£=1,,.,7) and let us substitute them into (1, 1), (1. 3) and (1, 2),
(1, 4), Then the constraints (1, 1) and (1. 3) transform into an identity, and the constraints
(1.2) and (1. 4) become

! 1
m = sglc‘,s’q.,—l- Cys 0, = E Cys0g (v=141,...,k (3.1)

8==1
after we cut off the last (from %) displacement parameters relative to ¢ , which we
assume to be dependent because of the nonholonomic constraints (1. 2) and (1. 4),
Here £ = & —g is the number of independent displacement parameters: ¢,; and ¢,
are functions of the variables Xxy,,.., X, and the time £,
The general dynamics equation may be reduced to (*)

d or d oT kook aT
Elma [‘dT’an—, - BZ ozt g — 33 M R Co g — Xe (T +)l=0 3.2
a= =1 8= = -

by utilizing (2, 2) and (2.3) . T

Here T = T (t, a,,..., Z,, Mir--.y M) s the kinetic energy; = U( ¢, xy,..,%)
the force function of the system,

*) See K,E, Shurova, Some properties of the Poincaré equations, Dissertation, Moscow
State Univ, , 1958,
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If the Wy ,, .., Wy are independent, i, e, if the system is subject only to the holonomic

constraints (1, 1), then we obtain the Poincaré Chetaev Eq, from (3. 2) 3.3
¥ {3
%%*26013 g:mz Ecsus 6T“‘“"X CT‘“}‘U)—O (o=1,... &
B=1 =1 f=1

When the nonholonomic constraints (1, 2) transformed to the form (3. 1}, are taken into
account, Eqs, (3, 3) do not hold, To obtain the equations of motion in this case, following
Chaplygin [5], we replace all the dependent possible-displacement parameters
o, (v=10+1,..., k) in(3,2) by means of (3,1). Then, because of the independence
of the ®,..., @, we obtain

d ar o
dt on, Z Coag ;;';;"*""Z nsZ Csap 6n — X (T +U) +

gx=1 p‘-“l

d or A1
+ Z m{dt o ECM ~y gcsugm~x\,w+c)‘§*o
v=l+41 =1 f=1
(a:i,...,l) (3.%4)
These Eqs, may be transformed to a form which does not contain the dependent para-
meters of the real displacements 1, (v = [ + 1,..., k). To do this, we separate all

the sums in (3, 4) into separate sums from 1 to £ and from £ + 1 to %, we replace all
the dependent parameters 1), in them by means of (3.1) and we obtain
d orT oT

k
d ar
2L Co = k Y‘ " ksap -
dt an, v§+ veTdr an, 2 028 Ing = 5821 s& an

k i k
or ; - L) = —1,...,0) (3.5
- 2 k(}av“é‘ﬁ“‘"“'g T}s 2 ksdw anv Ya (j i (') 0 (0‘ 1, » ) ( )

va=ld1 Y s=1 0 v=lH

Here k
Yc: == Xa'. + 2 fwva (@ = 1, ..., Z) (3.6}
a1
k

k k
kﬂda = COIIB '+' E CWI.COUB + E cp. (Cp.aﬁ ‘+’ 2 CvaCHup)
vaxf-t pe=l4-1 ve=l-f-1

k k k
Fyag = Csor.B -+ 2 CvaCsz -+ 2 Cus (Cp.aB -+ 2 cvacp.vﬂ>
vasl4-1 p=I-1 v=I[4}1

(s,a==1,... . LB=1,.., 0L t+14, ...,k (3.7)
Let ® denote the function obtained from I by replacing all the dependent real-dis-
placement parameters Tj,,,..., 1), by means of (3,1)
8 (tr Zyyeevy Ty Vgoeens nt) T (t Zyyeers Ty Tgseees Ty Meerrers nk) (3’8)
Then we have the following relanonships for 7' and @

* k 3.9)

oT .

Y. (T)=Y.(0)— E 6 M*Z s A.l e —— Yy (Coa) (a=1,...,0
v=]+41 g=1 vamf--1

—;—?— 2 6'4 Cyx (2 =1,...,0 (3.10)

vl
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x
d or aT dey,
dt an, = ar an, ~v=%lcvad_t‘_a,qv - vEH an, at (e=1,...,2 (3.11)

The derivatives dc,, /dt in (3. 11) may be found by means of (2, 2), which yield by
virtue of (3,1)

d l
cd:a = Yo(cwa) + Z Y 4 (Cva) (@=1,.. ., bv=1+1,...4) (3.12)

=1

Hi k
o Yo=Xo+ 3 oX, (3.43)

veal-1
Substituting (3. 9), (3. 10) and (3, 11), taking account of (3, 12) into (3, 5), we obtain

! l t k 4

d 48 a8 03y ] aT

o~ Dk ge— 3 W ks g — 3 i [keo— 3 ks +
B=1 =1 fB=1 vealdl Bami

14 k 4
+ Yo (en) = Y (@) [ =M ) g krar— 3 sbueat Y (ve) — Yo (o) | —

a=1 ve=l41 Bt
—Y.(8+U)=0 (@=1,...,10) (3.14)

This is the equation of motion of nonholonomic systems in Poincaré-Chetaev variables,
Together with 7 equations obtained from (2, 2) with (3, 1) for the function /' =Xy

(t = 1.-.-: n);
dz i i i< i : i
2 =8+ ) b NG+ N b)) G=1,...,n)(3.15)
v=141 a=l vaml 1
they yield 72 +£ first order equations for the determination of Xy ,.,., Xy and Ty,..., W
as a function of time ¢,

4, Particular cases, Let us show that (3, 14) contains, as particular cases, the
Chaplygin Eqs, [5] and the Volterra-Voronets Eq, [8 and 9] for nonholonomic systems,

In [5] Chaplygin examined a nonholonomic system defined by the generalized coordi-
nates X1 ,..., X5 subject to 72~£ nonholonomic constraints (£ fs the number of inde-

Pendent Velocities) zv, — cv1$1p + . _l_ cv[zl' ('\’ =1 __{_ i, e n) (4‘1)
Here ¢,, are functions independent of time ¢ and of z,,, ..., z,, which are cyclic

coordinates of the mechanical system; x,,' are derivatives of the variables X ,
He obtained the equations of motion in the form

l n
d 98 aT (9c,, o\ 3(B 4 U)
2B Ny 2 — ) 20T Y) —9 (4.2)
(@a=1,...,1

These Chaplygin Eqs, may be obtained from the Poincaré-Chetaev Eqs, (3.14). To do
this, we take Xy1,+4., Xy as Poincaré-Chetaev variables, Then no holonomic constraints
of (1, 1) type exist between these variables, they are only subject to the nonholonomic
constraints (1, 2) in the fon;n (1, 4),

Let us take X1 ,..., Xy as the real-displacement parameters T ,,,., Ty and we
take &x1,..., Oxy as the possible-displacement parameters W ..., Wy, In this case
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the displacement operators (2, 1) will be

a 0 )
on-éT, X“ﬁax’ (s=1,..., n) (4.3)

These operators commute, hence all the quantities C“lﬁ, Cyzin(2.3) and k., &,
in (3, 7) equal zero; all the terms containing koypr Bgpy are missing from (3. 14). '
The equations of the nonholonomic constraints (4, 1) take the form (3, 1)

{ {

1
n, = 2' L { o, == Z Cvx(Dl (\/.;[ -1, .. 1) (ﬂ

& =1 a==1

The operators (3, 13) and (3. 16) will be

n

9 : 0 b
Yo;-.*a-t—, )q':axa -+ ¥§1 Cvlb_._r.v_ (a::i,..., l) (45)

Because ¢,= 0 and c,,, O and U/ are independent of time and the cyclic displace-
ments x5, .. , Ty, these latter yield

dc, de,,
Yo (Cva) - Ya (cv) =0, ys (€,5) — Yat (Cvs) = ——0—1_0(_-_‘, ax_ Y‘x 0+0U)== ?_@a*_:_(])
s a a
(4.6)
(a, s =4,..,Lv=1l41,..., n

Hence, substituting (4, 6) into (3, 14), and first replacing 7,, n, by 2., 2, we obtain
the Chaplygin Eqs, (4, 2),

Also the generalization of the mentioned equations in Poincaré-Chetaev variables may
be obtained from (3. 14).

Let
1°, All the £~4£ displacement operators X;,i, ..., X) in (2, 1), which correspond

to the dependent displacement parameters 7, and o, from (3. 1), be cyclic displace-
ments according to Chetaev [2], and let Xo commute with all X, i.e, let the following

conditions be satisfied : (4.7)
(X, X)=0, X (T +U)=0, (Xo, X,) =0 (@=1,.., 0, I +1,..,k v=01,..., k)
2°, For the nonholonomic constraints reduced to the form (3, 1), there are the rela-
tionships A’p. (eya) = 0, Xp_ )=0 @=1,...,v,pu=1+1, .., k) (4.8)
Then (3, 14) become

l ! !
d 90 ] a8
- C — C —
dt om, 2 028 an, 2 s 2 sapB g
1

B=1 s=1 B=1

i
a 0T | q .
Z’ CO:'} - ;}J CVBCOGB - Xo(e,,) — Xy (e) } -
va={4-1 N B=1
i k oT I
4 r 1 y ; 1 T
- Z Ns Z a1 | Csxu - Z Cuﬁcszﬁ T Xs (€yz) — X, (cvs)J - Xa (0--U)=0
s=1  v=[}1 L B=1

(@=1,...,1) (4.9)

This is the generalized Chaplygin Eq, in Poincaré-Chetaev variables,
When the variables X ,.... X, are generalized coordinates, and the constraints (3. 1),
i, e, (4, 4) are independent of time, and ¢, = 0, then (4 9) take the form of the Chaply-

gin Eqgs, (4, 2).
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In exactly the same manner it can be shown that Eqs, (3,14) contain the Voronets
Eqs. [6] and their general form, the generalized Chaplygin-Voronets Eqs, [7] for nonholo-
nomic systerns in generalized coordinates (*),

The Volterra Egs, for nonholonomic systems in nonholonomic coordinates were obtained
in 1897 in [8], and Voronets obtained their generalization in 1903 in [9). In the men-
tioned paper (Chapter 3) Voronets considered a mechanical system defined by generalized
coordinates Xy ,..., £n subject to 7.— 4 nonholenomic consmainis (£ is the number of
independent velocities), which express the derivatives X1 ,...., xn' in terms of £ inde-
pendent quantities CQS' which are functions o time

il‘i' = Cilfplr —i*‘ ... + Cil('P{' + [} (i == 1, n) (410)

Here Qi , @1 are functions of time and the coordinates, For this system Voronets
obtained equations of motion in the form

; (4.11)
n n
d 06 2 ac) N oT 3! 3(B--U)
e —— T K3 T }_i Lav“‘“—;‘“ss Cig — =0 (@=1,...1)
dt dg, e 8«;}5 T Jr, = dx;
l de n P
s 3 3
Kap= D bai (- = 2 e 3 _
i=1 i=1 (a,B—i,..A,l ) (4.12)
de n 3x * t '\’T——‘E"]'—Il,...,n 1=
o va . Vo
b= = 3 e = 3 ok
i==1 T B=1
Here the quantities by; are defined from the relationships
bprCra - - T BpiCra = Bgq (e, B=1,...,10). (4.13)

(Opq is the Kronecker delta),

Let us obtain (4, 11) from (3,14), To do this, we take X1,..., Xn as Poincaré-Chetaev
variables, Then there will be no constraints of (1, 1) type among the Xy ; they are sub-
ject only to the nonholonomic constraints (1, 2) in the form (4,10). Hence if g, ..., @/
and =z, ..., =,/ are taken as parameters of the real displacements Ty, «.os My Mgyy»
vees b?']n then the displacement operators (2, 1) and the quantities Coaﬁ, Cmﬁ in{2,3)
will be

1 i
8 a . 8 8 _ e
X°='5—t—+2 ¢ 5o s X‘_‘Zc"&@;—pf' X“_ar (s=1,..., b v=l+1,..,n)
i=1 t =1 1 v
{4.14)
1 [
Coap = 2 bpj [Xo(63) — Xa o)l Copp=— D) by;X, (c;)
=1 i=1
! i
Coup= Z b [Xg(05) — X (€j)l; Copg=— Z bgiX, (¢ja)
3=1 je==1
CO!&[.L:—'CD\'[L: 6819=CV19=C‘JP‘B=CV}L’{ = (S,a,gzl,..., i v, b, Tml+ {,.... n)
(4‘15)

Here the by, are quantities determined from (4, 13) .
The equations of the nonholonomic constraints (3. 1) from (4. 10}, the displacement

") See also: M, L, Efimov. On Chaplygin equations for nonholonomic systems, Disserta-
tion, Institute of Mechanics, Akad, Nauk SSSR, 1953,
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operators (3, 13),(3, 6) will be the following:

n, = 2 €osMs + €y ©, = m KON (v-=0 =1, .., 8 (4.1
g=1 =1
a $ 3 \
.o L\t PN\ d . -
}n_%.?+% cf&j* Y, = 2: cm%T (x=1,...10 (4.17)
According to (3, 7) the quantities Foape wili be in this case
H
kmg = 2 bﬁj [Ye ((‘h) - Yat (Cj)], koav = k’sotv == ()
j=1
!
f— b Y((' )"—Y c. (‘q;a,Bmi,...,l
et J% # = (¢35l v=Il-41,...,n (4.18)

Because of (4, 1'7) and (4 18), Egs, (3,14) become

—e—fd!_,:qe g} aao(? Z 87 {Y° Cia) — Yo (o) + Z 1,1, (i) — Y4 (‘733)]}""

J=t $=1
Z 35{ 2 e E bay (Yoo =¥ <">+2m>’ () = Yo (e3)]) +

v=]+1 =1 s=1

%Yo(cva)"yu (e)) + 2 N [Yg(eya) — Yqicy) } Zcu MMO (w==1,...,1)

s=1 i== oz i
- (4.19)
After replacement of %, by ¢/, n, by 2, and
!
Yo (eje) + 2 Y (e
g
l n a .I
Yo o)+ 2 Yo (e =Y, (2) = D) ¢y
s==] j=1 i
these equations are reduced to
! !
d 08 ‘? 08
dt ana' ‘-_-i 6(pB’ 3'21 31( = Cia (9:8 )
7
oT [dc i Py
— —_— ¢; b e, 9% ) —
y—i1 Oz, 2 ia 61: 2 V3 2 BJ< 2§1 e Bxi.' ]

i=1

In the notation (4, 12) these latter agree with the Voronets Egs, (4, 11).
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