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Finally, simplest periodic motion of constrained systems can be investigated when the 

spheres move in some (e. g, homogeneous) field of force with the result that conditions 

(2.1) no longer hold. 
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The Poincar&Chetaev equations for holonomic mechanical systems have been written 

by Poincari 111 and generalized by Chetaev to the dependent variables case @I. The 

purpose of the present paper is to extend the mentioned method to the case of nonholo- 

nomic systems. 

1, Formulrtisn of the problem, Let us consider a nonholonomic mechani- 

cal system defined by the ?2 Poinca&Chetaev variables xl , . . . ,x, 12-J. which are 
subject, in real displacements, to the following $7 holonomic and Q nonholonomic con- 

straints a,& + * ' .+ asnx,' + a, = 0 (s = 1,. , ., p) (1.1) 

ct”~X~’ + . . . + c&J, + a, = 0 (Y = 1, . . ‘, q) (1.2) 

and in possible displacements, to Eqs. [3] 

as&r + . . * + azW~x, = 0 (s= 1,. I ., p) (1.3) 

&“&1+ . . . + avnbxn = 0 (v=l,...,q) (1.4) 

Here a,,, a,, avj, a, are functions of the time t and the variables ~1, . , . I xn ; ~1’ 

and 6x1 are the derivatives and variations of the variables Xi . The constraints (1.1) 
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and (1.3) form a completely integrable system of p Pfaffian forms [4]. The constraints 

(1.2) are not integrable, and may not mutually form completely integrable systems, nor 

with respect to (1.1). 
Let all the constraints be ideal, and let the forces have a force function. Let us write 

the equations of motion for this nonholonomic system by the Poincar&Chetaev method 

[l and 21, 

2. Conrtfuction of infInitcrfmr1 di8plrccmrnt operktor8. AS is 
known, a closed system of displacement operators is constructed in the Poincare’-Chetaev 

method [2]. We find these operators for a given system as in p), by using the holonomic 

constraints (1.1) for the actual displacements, and (1, 3) for the possible displacements, 

Hence, let UJ1 ,. , . , W, be the parameters of the possible displacements, and ‘l’),, . . . ,‘qk 
the parameters of the real displacements. The corresponding operators will be 

xa=i g.‘& (s=&...,k; k=n-pp) (2.1) 
i=l 

Here Soi, Ssi are functions of the variables and the time, 

Then changes in the arbitrary function of the position of the mechanical system 

f&x 1, . . , , x,) in the possible and real displacements admitted by (1.1) and (1.3) 
will be by definition t2] _ 

These operators xo and xl,. . , , xk satisfy the relationships 

(s*a=l.. . ., k) (2.3) 

Here CO,, and Cixe are functions of Xl,. , . , X, and $ dependent on the selection 
of the set of displacement parameters. 

3, Equations of motion. 
the function f = Xi 

Let us define Xi’ and 6x1 according to(2.2) for 
(5 = 1 . , . .7?,) and let us substitute them into (1. l),(l. 3) and (1,2), 

(1.4). Then the constraints (1.1) and (1.3) transform into an identity, and the constraints 
(1.2) and (1.4) become 

1 

% = i cvsqs + 6, 
8=1 

6% = x c,,os = 2 . s=1 (v -I- 1,. ., k) (3.1) 

after we cut off the last (from k) displacement parameters relative to 4 , which we 

assume to be dependent because of the nonholonomic constraints (1.2) and (1.4). 
Here JZ = k< is the number of independent displacement parameters : cvj and c, 

are functions of the variables at . . , , X, and the time 6. 

k 
The general dynamics equation may be reduced to (*) 

22 F 

d dT 
k 

--- 
“a dt t3qa Fl CO@ a_ “rT, - i v, ; Csaa g -X, (T + U,! = 0 (3.2) 

a=1 

by utilizing (2.2) aned=; .3) . 
s-1 B=l 

Here T = T (t, xl,..., a~,,, ql,..., qk) 

the force function of the system. 
is the kinetic energy ; u = v( t. x, , . . ,&) 

*) See K. E. Shurova, Some properties of the PoincarC equations. Dissertation, Moscow 
State Univ. ,195s. 
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If the Qt... , Wk are independent, i. e. if the system is subject only to the holonornic 
constraints (1, I), then we obtain the Poincar&Chetaev Eq. from (3.2) ,A ..* 

When the nonholonomic constraints (I. 2) transfarmed to the form (3. I), are taken into 

account, Eqs. (3.3) do not hold. To obtain the equations of motion in this case, following 
Chaplygin [S], we replace all the dependent possible-displacement parameters 

0, (Y = 1 .-/-I,..., k) in (3.2) by means of (3.1). Then, because of the independence 
of the We,..., wl, we obtain 

These Eqs. may be transformed to a form which does not contain the dependent para- 

meters of the real displacements Q (v = I + 2,. , . , k), To do this, we separate all 

the sums in (3.4) into separate sums from 1 to R and from R + 1 to &, we replace all 
the dependent parameters ‘tb in them by means of (3.1) and we obtain 

Here 
(3.6) 

(s, d=l,. - 1.1; p = 1, . . .$ 1, t + 1, . . ., It) (3.7) 

Let @ &note xhe fuIlct$on obtained from y by replacing all the dependent real-dis- 

placement parameters ~I+lr., . , qk by means of (3.1) 

@ (t, Xl,,.., %, Q,..., 91) = T (t, Tl,..‘? %:n, rlr,**., rlr, %t19..t %A (3.8) 

Then we have the following relationships for i” and @ 

Ya (T) = Y, (9) - i -gY.(c,)-i qs ; $-Y&e) 

[3.9) 

(a =I, . . .) I) 
v=1+4 y S==l VlcE-i-~ ” 

aT ae 
-qey=qy- i gcyx (a = 1, I . .I Z) (3.10) 

V=Z+L 
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d BT da0 k k 

xarl,=--- dt arl, 2 
d aT aT dc,, 

C’“;ii-arl,- z -- 
v=1+1 V==l +I 

a,,, ,ft (~=i,-**rz) (3*11) 

The derivatives kWo /dt in (3.11) may be found by means of (2.2), which yield by 
virtue of (3.1) 

%a 
dt= (a=i ,..., Z;v=l+i ,..., k) (3.12) 

r=l 

Here 
Y 0 = x0 + _$+lGx” (3.13) 

Substituting (3.9),(3.10) and (3.11). taking account of (3.12) into (3.5), we obtain 

-Ycz(~+U)=O (a==i,.,.,Z) (3.14) 

This is the equation of motion of nonholonomic systems in PoincakChetaev variables. 
Together with ?J equations obtained from (2.2) with (3.1) for the function 4 = xi 

(t = I,..., m, 

2 = Eo’+ ; c,EYi+ $ %+a+ i C”&vy (i=i (...( n) (3.15) 
*I+1 a=1 v=d+t 

they yield n +R first order equations for the determination of Xl,. . . , X,, and Q,. . . , Q 
as a function of time t . 

4, Partlculrr casaa, Let us show that(3.14) contains,as particular cases,the 
Chaplygin Eqs. [5] and the Volterra-Voronets Eq, [S and 91 for nonholonomic systems. 

In [5] Chaplygin examined a nonholonomic system defined by the generalized coordi- 
nates xl,.... x, subject to ?L-R nonholonomic constraints (1 is the number of inde- 

(4-i) 
Here ejl are functions independent of time ti and of ~r+~, . . ., z,, which are cyclic 

c-d&rates of the mechanical system ; Xl’ are derivatives of the variables xi . 
He obtained the equations of motion in the form 

(u = 1, * , .( I) 

These Chaplygin Eqs. may be obtained from the PoincarC-Chetaev Eqs. (3.14). To do 
this,we takexl,..., X, as PoincanSChetaev variables. Then no holonomic constraints 
of (1.1) type exist between these variables, they are only subject to the nonholonomic 
constraints (1.2) $I the forf;” (1.4). 

Let us take xl,..., 
take &,... , 

x,, as the real-displacement parameters Q, . , , , rjp and we 
6Xn, as the possible-displacement parameters W, , . . . , !&. Ia this case 
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the displacement operators (2.1) will be 

a 
x0=,,, X&- (s = 1, * . ., n) 

I 
These operators commute, hence all the quantities C,,lg, C:_13 in (2.3) and /,z()~~, /;_31 

in (3.7) equal zero; all the terms containing &, iisr+, are missing from (3.14). ’ 

The equations of the nonholonomic constraints (4.1) ‘take the form (3.1) 

WV == 
EL1 rx=l 

The operators (3.13) and (3.16) will be 

Because c, = 0 and c,~, 0 and u are independent of time and the cyclic displace- 

ments x1+1, . . , 5 these latter yield 

Yo (“.,a) - y, (6,) = 0, 
%a ac”, 

IWs (CYI) - y, (cvs) --= -&- - -j-p- , Y, (8 + U) =-= 
a (8 + U) 

s a 
ax 

n 

&s, 
(U, s : i, . _ ., 1; Y = I i- 1, . . ., n) 

Hence, substituting (4.6) into (3,14), and first replacing ?I%, n,, by xa’? x,‘, we obtain 
the Chaplygin Eqs. (4.2). 

Also the generalization of the mentioned equations in Poincark-Chetaev variables may 
be obtained from (3.14). 

Let 

lo. All the k-R displacement operators ~r+~, . . . . Xk in (2. l), which correspond 

to the dependent displacement parameters q, and w, from (3. l), be cyclic displace- 

ments according to Chetaev p], and let & commute with all XV, i. e. let the following 
conditions be satisfied : (4.7) 

(X,, X,)=0, X,(T+U)=O, (X0, X,)=0 (a=1 ,..., I, Z+l I..., k; v-1 L.l,...,k) 

2”. *For the nonholonomic constraints reduced to the form (3. l), there are the rela- 

tionships 
X, CC,,) = 0, X, (C,) = 0 (a = 1, . . ., 1; v, p = 1 f 1, . . . . Ii) (4.8) 

Then (3.14) become 

cl a0 --- 
dt a% P=l 

(C”J - x, (c”s)] - x, (8 -;- C’) = 0 

(a = 1,. . ., 1) (4.9) 

This is the generalized Chaplygin Eq. in Poincare’-Chetaev variables. 
When the variables Xl,. . . , xn are generalized coordinates, and the constraints (3.1). 

i., e. (4.4) are independent of time, and c, = 0, then (4, 9) take the form of the Chaply- 

gin Eqs. (4.2). 
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In exactly the same manner it can be shown that Eqs. (3.14) contain the Voronets 

Eqs. [6] and their general form, the generalized Chaplygin-Voronets Eqs. v] for nonholo- 

nomic systems in generalized coordinates (“) l 

The Volterra Eqs. for nonholonomic systems in nonholonomic coordinates were obtained 

in 1897 in [8], and Voronets obtained their generalization in 1903 in [9]. In the men- 

tioned paper (Chapter 3) Voronets considered a mechanical system defined by generalized 

coordinates XI _. , , , X, subject to ?I- & nonholonomic consuaints {a is the number of 

independent velocities). which express the derivatives Xl’, . . , , xn’ in terms of a inde- 
pendent quantities ys’ which are functions o time 

Xi’ = Ctl’pI 
I ( 

T . . . + Cil(c[’ + Ci (i = 1, . ..t TI) (4.10; 

Here s& , ci are functions of time and the coordinates. For this system Voronets 

obtained equations of motion in the form (4.11) 

(a = 1, . ~, Z) 

Here the quantities bpj are defined from the relationships 

bB1cla + . - . + b/q,, = $a (a, p = 1, . . ., I) (4.13} 

($t is the Kronecker delta). 
Let us obtain (4* 11) from (3.14). To do this, we take X1,. . . , A’, as Poincark-Chetaev 

variables, Then there will be no constraints of (1.1) type among the Xi i they are sub- 
ject only to the nonholonomic constraints (1.2) in the form (4.30). Hence if (g,‘, . ..% h 

and zlL1’, -.., 2,’ are taken as parameters of the real displacements rll, ..., rlr, rll+lc 

, , , I ‘Qn then the displacement operators (2.1) and the quantities CO,,, CSaa in (2.3) 

j=l j-1 

1 1 

G SaS = 2 bPi ixs (‘ia) - x, (‘js)I L cavg = - x bgjX, (cia) 

3=1 j=l 

c oap = coyp = CEIP = Cvrp = c,>,, = c,,, = 0 (s, a, f I= I,. * .) 1; v, y, y = I i_ i,, . ., II) 

Here the baj are quantities determined from (4* 13) . 
(4.151 

The equations of the nonholonomic constraints (3.1) from (4. la), thedis~la~ement 

+) See also: M. I, Efimov. On Chaplygin equations for nonholonomic systems, Disserts- 
tion . Institute of Mechanics, Akad. Nauk SSSR, 1953. 
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According to (3.7) the quantities k,,,x8, k,,.+ will be in this case 
t 

i’“@ = x bpj 1’0 tcf%) - Y, (cj)], 
i=l 

koa_, = k,,?, --= fl 

E 

k sap = 2 bflj Iy; (?j,i - Y, (“is)] 
2% i 

$9 e, ? = I, . 1 ., I 

2’ z= I -+ I, _ . ., y1 (4.18) 

Because of (4.17) and (4,18), Eqs, (3.14) become 

After replacement of qa by qcr’, Q by xv’ and 

these equations are reduced to 

In the notation {& 12) these latter agree with the Voronets Eqs. t4.11) , 
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